xác định hàm số
a, \(y=\sqrt{x^2+x-4}\)
b , \(y=\frac{1}{x^2+1}\)
c, y= l 2x - 3 l
d , \(y=\frac{1}{x^2-3x}\)
e , \(y=\sqrt{1-x}+\frac{1}{x\sqrt{1}+x}\)
f , \(y=\frac{2x-1}{\sqrt{x\sqrt{\left(x-4\right)}}}\)
g , \(y=\sqrt{3+x}+\frac{1}{x^2-1}\)
h , \(y=\frac{1}{\sqrt{2x^2-4x+4}}\)
i, \(y=\sqrt{6-x}+2x\sqrt{2x+1}\)
j, \(y=\frac{x^2+1}{\sqrt{2-5}}+x\sqrt{1+x}\)
k, \(y=\frac{1}{x^2+3x+3}+\left(x+2\right)\sqrt{x+3}\)
l, \(y=\sqrt[3]{\frac{3x+5}{x^2-1}}\)
Giải pt:
\(\sqrt{x^2+10x+21}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
\(4\left(x+1\right)^2=\left(2x+10\right)\left(1-\sqrt{3+2x}\right)^2\)
\(\frac{1}{1-\sqrt{1-x}}-\frac{1}{1+\sqrt{1-x}}=\frac{\sqrt{3}}{x}\)
\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
tìm tập xác định của hàm số :
f(x) = \(\frac{x^2+1}{\left(x-1\right)\sqrt{x^3+2x^2+3x}}\)
f(x) = \(\frac{\sqrt{x-2}}{\left|x^2-3x+2\right|+\left|x^2-1\right|}\)
Cho [tex]f(x)=\sqrt[3]{\frac{x}{2}+\sqrt{\frac{x^2}{4}-1}} + \sqrt[3]{\frac{x}{2}-\sqrt{\frac{x^2}{4}-1}}[/tex] và [tex]g(x)=x^4-4x^2+2[/tex].
CMR: [tex]f(g(x))=g(f(x))[/tex].
giải hệ
\(\hept{\begin{cases}\frac{1}{\sqrt{x}}+\frac{1}{2\sqrt{y}}=\left(x+3y\right)\left(y+3x\right)\\\frac{1}{\sqrt{x}}-\frac{1}{2\sqrt{y}}=2\left(y^2-x^2\right)\end{cases}}\)
tìm tập xác định của các hàm số :
a , \(y=\frac{\sqrt{3-x}+\sqrt{3+x}}{\left|x\right|-2}\)
b , \(y=\frac{\left|2x+1\right|-\sqrt{2}}{2x^2-3x+1}\)
Giải pt: \(x+\sqrt[3]{x^3-x^2}+\sqrt[3]{x^3-x}=\sqrt[3]{x^2+x+\frac{1}{3}}+\sqrt[3]{x^2+\frac{1}{3}}+\sqrt[3]{x+\frac{1}{3}}\)
Mọi người giúp mình bài này với
Giải các bất phương trình sau (ưu tiên giải bằng phương pháp đặt ẩn phụ):
a, \(4 \sqrt{x}+\frac{2}{\sqrt{x}}<2 x+\frac{1}{2 x}+2\)
b, \(\frac{1}{1-x^{2}}>\frac{3 x}{\sqrt{1-x^{2}}}-1\)
c,\(\sqrt{\frac{1}{x^{2}}-\frac{3}{4}}<\frac{1}{x}-\frac{1}{2}\)
d, \(x+\frac{x}{\sqrt{x^{2}-1}}>\frac{35}{12}\)
Mình cảm ơn nhiều ạ.
Giải các pt sau bằng cách đặt ẩn phụ:
a/\(-4\sqrt{\left(4-x\right)\left(2+x\right)}=x^2-2x-12\)
b/\(\left(x-3\right)^2+3x-22=\sqrt{x^2-3x+7}\)
c/\(\frac{\sqrt{x+4}+\sqrt{x-4}}{2}=x+\sqrt{x^2-16}-6\)
d/\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x+3\right)}=4-2x\)
e/\(\sqrt{x+7}+\sqrt{7x-6}+\sqrt{49x^2+7x-42}=181-14x\)
f/\(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)