\(\left(x-7\right)^x+1-\left(x-7\right)^x+11=0\)\(0\)
<=>\(\left(x-7\right)^x-\left(x-7\right)^x+12=0\)
<=> \(12=0\)=> \(v\text{ô}\)\(l\text{ý}\)
Ko có giá trị của x
Ta có : \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0^{x+1}\\\left(x-7\right)^{10}=1^{10}\end{cases}\Rightarrow\orbr{\begin{cases}x-7=0\\x-7=\pm1\end{cases}}}\)
Nếu x - 7 = 0 => x = 7
Nếu x - 7 = 1 => x = 8
Nếu x - 7 = - 1 => x = 6
Vậy \(x\in\left\{6;7;8\right\}\)