TV

Tìm x biết

|\(x^3+x\)| - |\(9x^2+9\)| = 0

KB
31 tháng 3 2022 lúc 10:05

\(\left|x^3+x\right|-\left|9x^2+9\right|=0\)

\(\Leftrightarrow\left|x\left(x^2+1\right)\right|-9\left|x^2+1\right|=0\)

\(\Leftrightarrow\left(\left|x\right|-9\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left|x\right|=9\left(x^2+1\ge1>0\right)\Leftrightarrow x=\pm9\)

Vậy ... 

Bình luận (0)
NV
31 tháng 3 2022 lúc 10:22

\(\left|x^3+x\right|-\left|9x^2+9\right|=0\)

\(TH1:\left\{{}\begin{matrix}\left|x^3+x\right|=0\\\left|9x^2+9\right|=0\end{matrix}\right.\)

\(\text{Vì }9x^2\ge0\)

\(\Rightarrow9x^2+9\ge9\)

\(TH2:\left|x^3+x\right|=\left|9x^2+9\right|\)

\(\Rightarrow\left[{}\begin{matrix}x^3+x=9x^2-9\\x^3+x=9x^2+9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^3+x+9x^2+9=0\\x^3+x-9x^2-9=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x.\left(x^2+1\right)+9.\left(x^2+1\right)=0\\x.\left(x^2+1\right)-9.\left(x^2+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=9\end{matrix}\right.\)

Bình luận (20)

Các câu hỏi tương tự
TV
Xem chi tiết
DA
Xem chi tiết
NS
Xem chi tiết
BD
Xem chi tiết
PH
Xem chi tiết
LP
Xem chi tiết
NT
Xem chi tiết
TM
Xem chi tiết
HA
Xem chi tiết