\(\left(x+1\right)+\left(x+2\right)+...\left(x+20\right)=930\)
\(\Rightarrow\left(x+x+...+x\right)+\left(1+2+...+20\right)=930\)
\(\Leftrightarrow20x+\left(\frac{\left(20+1\right).20}{2}\right)=930\)
\(\Leftrightarrow20x+210=930\)
\(\Leftrightarrow20x=930-210=720\)
\(\Leftrightarrow x=\frac{720}{20}=36\)
Vậy : \(x=36\)
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+20\right)=930\)
\(\Rightarrow\left(x+x+..+x\right)+\left(1+2+...+20\right)=930\)
\(\Rightarrow20x+210=930\)
\(\Rightarrow20x=720\Rightarrow x=36\)