NN

Tìm x, biết:

\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x+2015=\frac{2016}{1}+\frac{2017}{2}+...+\frac{4030}{2015}\).

TL
26 tháng 4 2015 lúc 13:34

\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\left(\frac{2016}{1}-1\right)+\left(\frac{2017}{2}-1\right)+...+\left(\frac{4030}{2015}-1\right)\)

\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\frac{2015}{1}+\frac{2015}{2}+...+\frac{2015}{2015}\)

\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=2015.\left(1+\frac{1}{2}+...+\frac{1}{2015}\right)\)

=> x = 2015

 

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
NN
Xem chi tiết
DA
Xem chi tiết
NP
Xem chi tiết
TD
Xem chi tiết
NP
Xem chi tiết
NC
Xem chi tiết
NS
Xem chi tiết
KD
Xem chi tiết