Tìm x biết:
\(\frac{x}{2018}+\frac{x+1}{2017}+\frac{x+2}{2016}+\frac{x+3}{2015}=-4\)
Giải:Ta có:\(\frac{x}{2018}+\frac{x+1}{2017}+\frac{x+2}{2016}+\frac{x+3}{2015}=-4\)
\(\Rightarrow\frac{x}{2018}+1+\frac{x+1}{2017}+1+\frac{x+2}{2016}+1+\frac{x+3}{2015}+1=0\)
\(\Rightarrow\frac{x+2018}{2018}+\frac{x+2018}{2017}+\frac{x+2018}{2016}+\frac{x+2018}{2015}=0\)
\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}\right)=0\)
\(\Rightarrow x+2018=0\) vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}>0\)
\(\Rightarrow x=-2018\)
Vậy x=-2018 thỏa mãn
x2018 +x+12017 +x+22016 +x+32015 =−4
⇒x2018 +1+x+12017 +1+x+22016 +1+x+32015 +1=0
⇒x+20182018 +x+20182017 +x+20182016 +x+20182015 =0
⇒(x+2018)(12018 +12017 +12016 +12015 )=0
⇒x+2018=0 vì 12018 +12017 +12016 +12015 >0
⇒x=−2018
Vậy x=-2018 thỏa mãn
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(\frac{x}{2018}+\frac{x+1}{2017}+\frac{x+2}{2016}+\frac{x+3}{2015}=-4\)
\(\Leftrightarrow\left(\frac{x}{2018}+1\right)+\left(\frac{x+1}{2017}+1\right)+\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+3}{2015}+1\right)=0\)
\(\Leftrightarrow\frac{x+2018}{2018}+\frac{x+2018}{2017}+\frac{x+2018}{2016}+\frac{x+2018}{2015}=0\)
\(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x+2018=0\)
\(\Leftrightarrow x=-2018\)
Vậy : x = -2018