CY

Tìm x biết

\(\frac{x-1}{2019}\)\(\frac{x-2}{2018}\)\(\frac{x-3}{2017}\)\(\frac{x-4}{2016}\)

KN
28 tháng 7 2019 lúc 15:49

\(\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}=\frac{x-4}{2016}\)

\(\Leftrightarrow\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}-\frac{x-4}{2016}=0\)

\(\Leftrightarrow\frac{x-1}{2019}-1+\frac{x-2}{2018}-1-\frac{x-3}{2017}+1-\frac{x-4}{2016}+1=0\)

\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)

\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)

\(\Leftrightarrow x-2020=0\Leftrightarrow x=2020\)

Bình luận (0)
NP
28 tháng 7 2019 lúc 15:53

\(\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}=\frac{x-4}{2016}\)

\(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)

\(\frac{x-1}{2019}+\frac{x-2}{2018}-2=\frac{x-3}{2017}+\frac{x-4}{2016}-2\)

\(\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)

\(\frac{x-1-2019}{2019}+\frac{x-2-2018}{2018}=\frac{x-3-2017}{2017}+\frac{x-4-2016}{2016}\)

\(\frac{x-2020}{2019}+\frac{x-2020}{2018}=\frac{x-2020}{2017}+\frac{x-2020}{2016}\)

\(\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)

\(\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)

\(\Rightarrow x-2020=0\)

Vậy \(x=2020\)

Bình luận (0)