1/1.3 + 1/3.5 + ... + 1/x(x+2) = 20/21
=> 2/1.3 + 2/3.5 + ... + 2/x(x+2) = 20/21
1 - 1/3 + 1/3 - 1/5 + ... + 1/x - 1/x+2 = 20/21
1 - 1/x+2 = 20/21
1/x+2 = 1/21
=> x + 2 = 21
=> x = 19
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.......+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{21}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{20}{21}:\frac{1}{2}\)
\(\Rightarrow\frac{x+1}{x+2}=\frac{40}{21}\)
=>(x+1)21=(x+2)40
=>21x+21=40x+80
=>61x=101
=>x\(\in\varphi\)