\(2^x+2^{x+4}=272\)
\(< =>2^x.\left(1+2^4\right)=272\)
\(< =>2^x.17=272\)
\(< =>2^x=272:17\)
\(< =>2^x=16\)
\(< =>2^x=2^4\)
\(=>x=4\)
a, x-4/2-15-1/2015=10-2x
qua điều trên:
Ta thấy rằng :
x-5=10-2x
=>
x=15-2x
=>
0=15-3x
=>x=5
Ta có:
2x+2x+4=272
=> 2x.(1+16)=272
=>2x.17=272
=>2x=16
=>x=4
\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)
\(< =>\frac{x-4-1}{2015}=\frac{10-2x}{2015}\)
\(< =>\frac{x-5}{2015}=\frac{10-2x}{2015}\)
\(< =>\frac{x-5}{2015}-\frac{10-2x}{2015}=0\)
\(< =>\frac{x-5-\left(10-2x\right)}{2015}=0\)
\(< =>\frac{x-5-10+2x}{2015}=0\)
\(< =>\frac{3x-15}{2015}=0\)
\(< =>3x-15=0\)
\(< =>3x=15\)
\(< =>x=5\)