\(\text{Sửa đề:}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}=\frac{1}{8}\)
\(\text{Đặt biểu thức là A:}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}=\frac{1}{8}\)
\(2A=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{\left(2x-2\right).2x}=\frac{1}{8}\times2=\frac{1}{4}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}=\frac{1}{4}\)
\(2A=\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(A=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{2x}\right)=\frac{1}{8}\)
\(A=\frac{1}{2}\times\frac{1}{2}-\frac{1}{2}\times\frac{1}{2x}=\frac{1}{8}\)
\(A=\frac{1}{4}-\frac{1}{4x}=\frac{1}{8}\)
\(\Rightarrow\frac{1}{4x}=\frac{1}{4}-\frac{1}{8}=\frac{2}{8}-\frac{1}{8}=\frac{1}{8}\)
\(\Rightarrow4x=8\)
\(\Rightarrow x=8\div4=2\)