tìm x: \(x=\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\) các tỉ số đều có nghĩa
Cho các số a,b,c,x,y,z thõa mãn \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\)\(\frac{z}{4a-4b+c}\). CHỨNG MINH \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)( GIẢ THIẾT CÁC TỈ SỐ ĐỀU CÓ NGHĨA )
cho các số a,b,c,x,y,z thỏa mãn a+b+c=\(a^2+b^2+c^2\) =1 và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) (các tỉ số đều có nghĩa ). CM :\(x^2+y^2+z^2=\left(x+y+z\right)^2\)
Cho \(\frac{b+c}{bc}=\frac{2}{a}CMR:\frac{b}{c}=\frac{a-b}{c-a}\)(các tỉ số đều có nghĩa)
Cho các số a, b, c, x, y, z thỏa mãn \(a+b+c=a^2+b^2+c^2=1\) 1 và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)( Các tỉ số đều có nghĩa ). Chứng minh : \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
a) Tìm giá trị lớn nhất của biểu thức: A=\(1,5-|x-2,5|\)
b) Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) . Chứng minh rằng: \((\frac{a+b+c}{b+c+d})^3=\frac{a}{d}\)( Giả thiết các tỉ số đều cs nghĩa)
Giúp mình với :(
Nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\) thì \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)( Giả thiết các tỉ lệ đều có nghĩa )
Cho \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
CmR\(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\) ( các giả thiết tỉ số đều có nghĩa)
1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0
b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344
c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17
3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0
b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A
c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)