TN

Tìm x biết:     x^4 - 30x^2 + 31x - 30 = 0

                  

x^4 - 30x^2 + 31x - 30 = 0
<=> x^4 + x^3 - 30x^2 - x^3 - x^2 + 30x+ x^2 + x - 30 = 0
<=> x^2(x^2 + x - 30) - x(x^2 + x - 30) + (x^2 + x - 30) = 0
<=> (x^2 - x + 1)(x^2 + x - 30) = 0
<=> (x^2 - x + 1)(x + 6)(x - 5) = 0
Mà x^2 - x + 1 = (x^2 - 2.x.1/2 + 1/4) + 3/4 = (x - 1/2)^2 + 3/4 > 0
=> x = -6 hoặc x = 5

hc tốt ~:B~

Bình luận (0)
H24
20 tháng 6 2019 lúc 14:18

x^4 - 30x^2 + 31x - 30 = 0
<=> x^4 + x^3 - 30x^2 - x^3 - x^2 + 30x+ x^2 + x - 30 = 0
<=> x^2(x^2 + x - 30) - x(x^2 + x - 30) + (x^2 + x - 30) = 0
<=> (x^2 - x + 1)(x^2 + x - 30) = 0
<=> (x^2 - x + 1)(x + 6)(x - 5) = 0
Mà x^2 - x + 1 = (x^2 - 2.x.1/2 + 1/4) + 3/4 = (x - 1/2)^2 + 3/4 > 0
=> x = -6 hoặc x = 5

Bình luận (0)
H24
20 tháng 6 2019 lúc 14:19

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)

Vì: \(x^2-x+1=x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)

Vậy: x = 5 hoặc x = -6

Bình luận (0)
H24
20 tháng 6 2019 lúc 14:23

x^4 - 30x^2 + 31x - 30 = 0
<=> x^4 + x^3 - 30x^2 - x^3 - x^2 + 30x+ x^2 + x - 30 = 0
<=> x^2(x^2 + x - 30) - x(x^2 + x - 30) + (x^2 + x - 30) = 0
<=> (x^2 - x + 1)(x^2 + x - 30) = 0
<=> (x^2 - x + 1)(x + 6)(x - 5) = 0
Mà x^2 - x + 1 = (x^2 - 2.x.1/2 + 1/4) + 3/4 = (x - 1/2)^2 + 3/4 > 0
=> x = -6 hoặc x = 5

Bình luận (0)

Các câu hỏi tương tự
VA
Xem chi tiết
PL
Xem chi tiết
KC
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
LT
Xem chi tiết
HL
Xem chi tiết
VM
Xem chi tiết