\(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+xz\right)\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\) (BĐT luôn đúng)
Dấu bằng xảy ra <=> x=y=z