Theo bài ra ta có:
|x+\(\frac{1}{2}\)|\(\ge\)0
|x+\(\frac{1}{6}\)|\(\ge\)0
............................
|x+\(\frac{1}{110}\)|\(\ge\)0
\(\Rightarrow\)|x+\(\frac{1}{2}\)|+|x+\(\frac{1}{6}\)|+...+|x+\(\frac{1}{110}\)|\(\ge\)0
\(\Rightarrow\)11.x\(\ge\)0
\(\Rightarrow\)x\(\ge\)0
\(\Rightarrow\)x dương.
Khi đó:|x+\(\frac{1}{2}\)|+|x+\(\frac{1}{6}\)|+...+|x+\(\frac{1}{110}\)|=11.x
\(\Rightarrow\)x+\(\frac{1}{2}\)+x+\(\frac{1}{6}\)+...+x+\(\frac{1}{110}\)=11.x
\(\Rightarrow\)27.x+\(\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)=11x
\(\Rightarrow\)\(\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)=-16x
\(\Rightarrow\)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\)=-16x
\(\Rightarrow\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)=-16x
\(\Rightarrow\)\(\frac{10}{11}\)=-16x
\(\Rightarrow\)\(\frac{10}{-176}=x\)
Vậy \(x=\frac{10}{-176}\).