\(x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}\)
\(\Leftrightarrow x^2-5=\sqrt{13+\sqrt{5+\sqrt{13+...}}}\)
\(\Leftrightarrow\left(x^2-5\right)^2=13+x\)
\(\Leftrightarrow x^4-10x^2-x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+3\right)\left(x+1\right)\left(x-1\right)-1\right]=0\)
do x>2 nen x=3
Bạn Tuyển Trần Thị cho mình hỏi là x > 2 ở đâu vậy?
x=\(\sqrt{5+\sqrt{13...}}>\sqrt{5}>\sqrt{4}=2\)