Theo bài ra, ta có: \(\left(x-1\right)\in BC\left(5;6;8\right)\)
5 = 5
6 = 2.3
8 = 23
\(BCNN\left(5;6;8\right)=2^3.3.5=120\)
Vậy \(\left(x-1\right)\in BC\left(120\right)=\left\{120;240;...;720;840;960;...\right\}\)
Mà \(800< x< 900\Rightarrow799< x-1< 899\)
Do đó: \(x-1=840\)
Vậy x = 841
ta có:
\(x-1⋮5\Rightarrow x-1\in B\left(5\right)\)
\(x-1⋮6\Rightarrow x-1\in B\left(6\right)\)
\(x-1⋮8\Rightarrow x-1\in B\left(8\right)\)
\(\Rightarrow x-1\in BC\left(5;6;8\right)\)
Phân tích ra thừa số nguyên tố
5 = 5
6 = 2.3
8 = 23
\(\Rightarrow BCNN\left(5;6;8\right)=2^3.3.5=120\)
\(\Rightarrow x-1\in B\left(120\right)=\left\{120;240;360;480;600;720;840;960;...\right\}\)
mà \(800< x< 900\Rightarrow799< x-1< 899\)
\(\Rightarrow x-1=840\)
\(x=840+1=841\)
\(\hept{\begin{cases}\left(x-1\right)⋮5\\\left(x-1\right)⋮6\\\left(x-1\right)⋮8\end{cases}\Rightarrow}\left(x-1\right)\in BC\left(5,6,8\right)\text{và}\text{ }799< x-1< 899\)
\(\text{Ta có:}\)\(5=5\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ };\text{ }6=2.3\text{ }\text{ };\text{ }8=2^3\)
\(\text{ }\Rightarrow BCNN\left(5,\text{ }6,\text{ }8\right)=2^3.3.5=120\)
\(\Rightarrow BC\left(5,6,8\right)=B\left(120\right)=\left\{0,120,240,360,480,600,720,840,960,......\right\}\)
\(\text{Mà }799< x-1< 899\)
\(\Rightarrow x-1=840\)
\(\Rightarrow x=840+1\)
\(\Rightarrow x=841\)