\(\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\frac{1}{5}+\frac{1}{8}-\frac{1}{8}+\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
\(\left(\frac{1}{5}-\frac{1}{x+3}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+...+\left(\frac{1}{x}-\frac{1}{x}\right)=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
=>x+3=308
x=308-3
x=305
Vậy x=305