TA

Tìm x, biết:     \(\left(3x-7\right)^{2005}=\left(3x-7\right)^{2003}\)

 

LC
16 tháng 10 2019 lúc 22:25

Ta có: \(\left(3x-7\right)^{2005}=\left(3x-7\right)^{2003}\)

\(\Leftrightarrow\left(3x-7\right)^{2005}-\left(3x-7\right)^{2003}=0\)

\(\Leftrightarrow\left(3x-7\right)^{2003}\left[\left(3x-7\right)^2-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(3x-7\right)^{2003}=0\\\left(3x-7\right)^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x\in\left\{\frac{8}{3};2\right\}\end{cases}}\)

Vậy \(x\in\left\{\frac{7}{3};\frac{8}{3};2\right\}\)

Bình luận (0)
NH
17 tháng 10 2019 lúc 20:15

\(\left(3x-7\right)^{2005}=\left(3x-7\right)^{2003}\)

\(\Rightarrow\left(3x-7\right)^{2005}-\left(3x-7\right)^{2003}=0\)

\(\Leftrightarrow\left(3x-7\right)^{2003}[\left(3x-7\right)^2-1]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(3x-7\right)^{2003}=0\\\left(3x-7\right)^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x-7=0\\3x-7=1\end{cases}}\)hoặc \(3x-7=-1\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=\frac{8}{3}\end{cases}}\)hoặc \(x=2\)

Vậy ...............................

Bình luận (0)