\(a,x+1=\left(x+1\right)^2\)
\(\Leftrightarrow x+1=x^2+2x+1\)
\(\Leftrightarrow x^2+2x+1-x-1\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\left(+\right)x=0\)
\(\left(+\right)x+1=0\Leftrightarrow x=-1\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;0\right\}\)
\(b,x^3+x=0\Leftrightarrow x\left(x^2+1\right)=0\)
\(\left(+\right)x=0\)
\(\left(+\right)x^2+1=0\)
Vì \(x^2\ge0;1>0\Rightarrow x^2+1>0\)
\(\Rightarrow\) Phương trình \(x^2+1=0\) vô nghiệm
Vậy Phương trình có tập nghiệm \(S=\left\{0\right\}\)
Đúng 0
Bình luận (0)