Bài làm:
Ta có: \(\frac{3x}{2}=\frac{4y}{3}=\frac{5z}{7}\) => \(\frac{x}{40}=\frac{y}{45}=\frac{z}{84}\)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\frac{x}{40}=\frac{y}{45}=\frac{z}{84}=\frac{2x+y-z}{80+45-84}=\frac{5}{41}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{200}{41}\\y=\frac{225}{41}\\z=\frac{420}{41}\end{cases}}\)
Theo bài ra ta có : \(\frac{3x}{2}=\frac{4y}{3}=\frac{5z}{7}\Leftrightarrow\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{4}}=\frac{z}{\frac{7}{5}}\)( sử đề luôn )
Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{4}}=\frac{z}{\frac{7}{5}}=\frac{2x+y-z}{\frac{4}{3}+\frac{3}{4}-\frac{7}{5}}=\frac{5}{\frac{41}{60}}=\frac{300}{41}\)
\(x=\frac{200}{41};y=\frac{225}{41};z=\frac{420}{41}\)