\(2\left(|x-1|+x-\frac{4}{5}\right)=2x-\frac{2}{5}\)
\(TH1:x\ge1\Rightarrow|x-1|=x-1\)
\(\Rightarrow2\left(x-1+x-\frac{4}{5}\right)=2x-\frac{2}{5}\)
\(\Rightarrow2\left(2x-\frac{9}{5}\right)=2x-\frac{2}{5}\Rightarrow4x-\frac{18}{5}=2x-\frac{2}{5}\)
\(\Rightarrow4x-2x=\frac{18}{5}-\frac{2}{5}\Rightarrow2x=\frac{16}{5}\Rightarrow x=\frac{16}{5}:2=\frac{16}{10}=\frac{8}{5}\)
\(TH2:x< 1\Rightarrow|x-1|=-x+1\)
\(\Rightarrow2\left(-x+1+x-\frac{4}{5}\right)=2x-\frac{2}{5}\)
\(\Rightarrow2\left(1-\frac{4}{5}\right)=2x-\frac{2}{5}\Rightarrow2\cdot\frac{1}{5}=2x-\frac{2}{5}\)
\(\Rightarrow2x-\frac{2}{5}=\frac{2}{5}\Rightarrow2x=\frac{2}{5}+\frac{2}{5}=\frac{4}{5}\Rightarrow x=\frac{4}{5}:2=\frac{4}{10}=\frac{2}{5}\)