LL

Tìm x biết. | 2x + 1| - | x - 1| = 3x ​

Mn ơi bay vô đây giúp tui🤗😭😭😭

LC
11 tháng 7 2019 lúc 16:27

có gì ko hiểu bạn hỏi nhé

\(|2x+1|-|x-1|=3x\left(1\right)\)

Ta có:

\(2x+1=0\Leftrightarrow x=\frac{-1}{2}\)

\(x-1=0\Leftrightarrow x=1\)

Lập bảng xét dấu :

2x+1 x-1 -1/2 1 -0 0 0 - - - + + + +

+) Với  \(x< \frac{-1}{2}\Rightarrow\hept{\begin{cases}2x+1< 0\\x-1< 0\end{cases}\Rightarrow}\hept{\begin{cases}|2x+1|=-2x-1\\|x-1|=1-x\end{cases}\left(2\right)}\)

Thay (2) vào (1) ta được :

\(\left(-2x-1\right)-\left(1-x\right)=3x\)

\(-2x-1-1+x=3x\)

\(-2x+x-3x=1+1\)

\(-4x=2\)

\(x=\frac{-1}{2}\)( loại ) 

+)  Với \(\frac{-1}{2}\le x< 1\Rightarrow\hept{\begin{cases}2x+1>0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|2x+1|=2x+1\\|x-1|=1-x\end{cases}\left(3\right)}}\)

Thay (3) vào (1) ta được :

\(\left(2x+1\right)-\left(1-x\right)=3x\)

\(2x+1-1+x=3x\)

\(3x=3x\)( luôn đúng chọn )

+) Với \(x\ge1\Rightarrow\hept{\begin{cases}2x+1>0\\x-1>0\end{cases}\Rightarrow\hept{\begin{cases}|2x+1|=2x+1\\|x-1|=x-1\end{cases}\left(4\right)}}\)

Thay (4) vào (1) ta được :

\(\left(2x+1\right)-\left(x-1\right)=3x\)

\(2x+1-x+1=3x\)

\(2x-x-3x=-1-1\)

\(-2x=-2\)

\(x=1\)( chọn )

Vậy \(\frac{-1}{2}\le x\le1\)

Bình luận (0)

\(\left|2x+1\right|-\left|x-1\right|=3x\Rightarrow\left|2x+1-1+x\right|\ge3x\)

\(\Leftrightarrow\left|3x\right|\ge3x\Rightarrow x\in\left\{x\inℤ|x\le0\right\}\)

Bình luận (0)

Các câu hỏi tương tự
KL
Xem chi tiết
TD
Xem chi tiết
NH
Xem chi tiết
KL
Xem chi tiết
NT
Xem chi tiết
VS
Xem chi tiết
HV
Xem chi tiết
NN
Xem chi tiết
TD
Xem chi tiết