1+2+3+4+...+x=210
Đặt A=1+2+3+4+...+x
A số số hạng (x-1):1+1=x(số hạng)
A=(x+1).x:2
\(\Rightarrow\)(x+1).x:2=210
\(\Rightarrow\)(x+1).x=210.2
x=420
\(\Rightarrow\)(x+1).x=21.20
x=20
Ta có : 1 + 2 + 3 + ... + x = [x . (x + 1)] : 2 = 210
=> x . (x + 1) = 210 : 2
x . (x + 1) = 420 = 20 . 21
=> x = 20
1+2+3+...+x=[x.( 1+x)] : 2= 210
=> x. ( x+1)=210:2
=> x. ( x+1)=20.21
x= 20
Ta có: S = 1 + 2 + 3 + ... + n (1)
S = n + n - 1 + ... + 1 (2)
=> ( 1 ) + ( 2 ) = 2 S = n + 1 + n + 1 + ... + n + 1
2S = n ( n + 1 )
=> S = n ( n + 1 ) / 2
Ta có: 1 + 2 + 3 + 4 + 5 + ... + x =210
=>x( x + 1 ) / 2 = 210
=> x2 + x - 420 = 0
=> x = 20