a) \(\left(x^2+4\right)^2-4x\left(x^2+4\right)=0\)
\(=\left(x^2+4\right)\left(x^2+4-4x\right)=0\)
\(=\left(x^2+4\right)\left(x+2\right)^2=0\)
Mà \(x^2\ge0\Rightarrow x^2+4>0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
b) \(x^5-18x^3+81x=0\)
\(=\left(x^5-9x^3\right)-\left(9x^3-81x\right)=0\)
\(=x^3\left(x^2-9\right)-9x\left(x^2-9\right)=0\)
\(=\left(x^3-9x\right)\left(x^2-9\right)=0\)
\(=x\left(x^2-9\right)\left(x^2-9\right)=0\)
\(=x\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x\in\left\{-3;3\right\}\end{cases}}\)