a, \(x^2\) = \(x^3\)
\(x^3\) - \(x^2\) = 0
\(x^2\)( \(x\) -1) = 0
\(\left[{}\begin{matrix}x^2=0\\x-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy \(x\) \(\in\) { 0; 1}
e, 32\(x+1\) = 27
\(3^{2x}\)+1 = 33
2\(x\) + 1 = 3
2\(x\) = 2
\(x\) = 1
g, 62 = 6\(x-3\)
2 = \(x-3\)
\(x\) = 3 + 2
\(x\) = 5
\(a,x^2=x^3\\ \Rightarrow x^2-x^3=0\\ \Rightarrow x^2\left(1-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2=0\\1-x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(b,3^{2x+1}=27\\ \Rightarrow3^{2x+1}=3^3\\ \Rightarrow2x+1=3\\ \Rightarrow2x=3-1\\ \Rightarrow2x=2\\ \Rightarrow x=2:2\\ \Rightarrow x=1\)
\(c,6^2=6^{x-3}\\ \Rightarrow6^{x-3}=6^2\\ \Rightarrow x-3=2\\ \Rightarrow x=2+3\\ \Rightarrow x=5\)