Cho \(x_i\in\left[1;\sqrt{2}\right]\)
Chứng minh: \(\frac{\sqrt{x_1^2}-1}{x_2}+\frac{\sqrt{x_2^2}-1}{x_3}+...+\frac{\sqrt{x_n^2}-1}{x_1}\le\frac{n\sqrt{2}}{2}\)
tìm tất cả các số thực \(x_1,x_2,...,x_{2005}\) thỏa mãn
\(\sqrt{x_1-1}+2\sqrt{x_2-2^2}+...+2005\sqrt{x_{2005}-2005^2}=\dfrac{1}{2}\left(x_1+x_2+...+x_{2005}\right)\)
Cho phương trình: \(x^2-2\left(m+1\right)x+2m=0\) ( m là tham số ). Tìm m để pt có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn:
\(\sqrt{\left(\sqrt{x_1}+1\right)^2+\left(\sqrt{x_2}+1\right)^2-x_1.x_2}=\sqrt{2\sqrt{2+4}}\)
Cho pt:\(x^2-2\left(m+3\right)x+2m+5=0\)
a)Tìm m để pt có 2 nghiệm \(x_1,x_2\) thõa mãn :\(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{4}{3}\)
2013x2 -(m-2014)x-2015=0.m=?để phương trình có 2 nghiệm x1,x2 thoả mãn :\(\sqrt{x_1^2+2014}-x_1=\sqrt{x_2^2+2014}+x_2\)
Cho phương trình \(x^2-2\left(m+2\right)x+m^2-4=0\left(1\right)\) ( \(m\) là tham số ). Gọi \(x_1,x_2\) là hai nghiệm phân biệt của phương trình trên.
a) Không giải phương trình hãy tính \(P=\sqrt{x_1}+\sqrt{x_2}\) với \(m=2\).
b) Tìm \(m\) thoả mản phương trình \(\left(1\right)\) có hai nghiệm thoã mản \(\sqrt{\frac{x_1x_2}{x_1+2x_2+\frac{x_2^2}{x_1}}}=\sqrt{x_1}\)
Cho PT \(x^2-2\left(m+1\right)x+m^2+2m=0\) ( m là tham số). Tìm m để PT có 2 nghiệm phân biệt \(x_1;x_2\) ( với \(x_1< x_2\)) thảo mãn \(\left|x_1\right|=3\left|x_2\right|\)
Gọi x1, x2 là 2 nghiệm của phương trình \(2x^2+3mx-\sqrt{2}=0\)(m là tham số). Giá trị nhỏ nhất của biểu thức \(P=\left(x_1-x_2\right)^2+\left(\frac{1+\left(x_1\right)^2}{x_1}+\frac{1+\left(x_2\right)^2}{x_2}\right)^2\)là...
Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)