LD

tìm \(x_1;x_2;x_3;......;x_{2011}\) biet 

\(\frac{x_1-1}{2010}=\frac{x_2-2}{2009}=.....=\frac{x_{2010}-2010}{1}\)va \(x_1+x_2+.....+x_{2011}=2\left(1+2+3+...+2010\right)\)

 

 

NH
22 tháng 2 2017 lúc 18:37

\(\frac{x_1-1}{2010}=...=\frac{x_{2010}-2010}{1}=\frac{x_1+x_2+...+x_{2010}-\left(1+2+...+2010\right)}{2010+2009+...+1}\)

\(=\frac{2\left(1+2+...+2010\right)-\left(1+2+...+2010\right)}{1+2+...+2010}=1\)

Vậy thay vào ta được: \(x_1=x_2=...=x_{2010}=2011\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
LT
Xem chi tiết
HN
Xem chi tiết
DT
Xem chi tiết