1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 2003/2005
2 × ( 1/6 + 1/12 + 1/20 + ... + 1/x(x+1) = 2003/2005
1/2×3 + 1/3×4 + 1/4×5 + ... + 1/x(x+1) = 2003/2005 : 2
1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1 = 2003/2005 × 1/2
1/2 - 1/x+1 = 2003/4010
1/x+1 = 1/2 - 2003/4010
1/x+1 = 2005/4010 - 2003/4010
1/x+1 = 1/2005
=> x+1 = 2005
=> x = 2004
Vậy x = 2004
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2005}\)
\(\Leftrightarrow x+1=2005\)
\(\Leftrightarrow x=2004\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2003}{4010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2005}\)
\(\Leftrightarrow x=2004\)