Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

SG

tìm UCLN (2n -1; 9n + 4 ) với n thuộc N

V1
3 tháng 9 2016 lúc 15:14

Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1)  ⋮  d ⇒ 17  ⋮  d ⇒ d ∈ {1, 17}. 

Ta có 2n - 1  ⋮  17 ⇔  2n - 18  ⋮  17 ⇔ 2(n - 9)  ⋮  17 ⇔ n - 9 ⋮   17  ⇔ n = 17k + 9 (k ∈N).

Nếu n = 17k + 9 thì 2n - 1  ⋮  17, và 9n + 4 = 9(17k + 9) + 4 = bội 17 + 85  ⋮  17, do đó (2n - 1, 9n + 4) = 17.

Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó (2n - 1, 9n + 4) = 1.

Bình luận (0)
SG
3 tháng 9 2016 lúc 15:15

Gọi d = ƯCLN(2n - 1; 9n + 4) (d thuộc N*)

=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d

=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d

=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d

=> (18n + 8) - (18n - 9) chia hết cho d

=> 18n + 8 - 18n + 9 chia hết cho d

=> 17 chia hết cho d

=> d thuộc {1 ; 17}

+ Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17

=> 2n - 1 - 17 chia hết cho 17; 9n + 4 - 85 chia hết cho 17

=> 2n - 18 chia hết cho 17; 9n - 81 chia hết cho 17

=> 2.(n - 9) chia hết cho 17; 9.(n - 9) chia hết cho 17

Mà (2;17)=1; (9;17)=1 => n - 9 chia hết cho 17

=> n = 17.k + 9 (k thuộc N)

Vậy với n = 17.k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 17

Với n khác 17.k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 1

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NA
Xem chi tiết
AK
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
GK
Xem chi tiết
PA
Xem chi tiết
DL
Xem chi tiết
DH
Xem chi tiết