DL

Tìm tất cả các số nguyên x,y sao cho xy-2x+y=1

AH
6 tháng 1 2024 lúc 16:38

Lời giải:

$xy-2x+y=1$

$(xy-2x)+y=1$

$x(y-2)+(y-2)=-1$

$(x+1)(y-2)=-1$
Vì $x,y$ nguyên nên $x+1, y-2$ cũng là số nguyên. Mà $(x+1)(y-2)=-1$ nên ta có các TH sau:

TH1: $x+1=1, y-2=-1\Rightarrow x=0; y=1$ (thỏa mãn) 

TH2: $x+1=-1, y-2=1\Rightarrow x=-2; y=3$ (thỏa mãn)

Bình luận (0)
MP
6 tháng 1 2024 lúc 18:56

Ta có:

\(xy-2x+y=1\)

\(\Rightarrow\left(xy-2x\right)+y=1\)

\(\Rightarrow x\left(y-2\right)+\left(y-2\right)=-1\)

\(\Rightarrow\left(x+1\right)\left(y-2\right)=-1\)

Vì \(x;y\inℤ\Rightarrow x+1;y-2\inℤ\) và \(x+1;y-2\inƯ\left(-1\right)=\left\{\pm1\right\}\)

Ta có bảng sau:

\(x+1\) \(1\) \(-1\)
\(y-2\) \(-1\) \(1\)
\(x\) \(0\) \(-2\)
\(y\) \(1\) \(3\)

Vậy \(\left(x;y\right)\in\left\{\left(0;1\right),\left(-2;3\right)\right\}\)

 

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
PB
Xem chi tiết
ML
Xem chi tiết
PH
Xem chi tiết
DL
Xem chi tiết
VM
Xem chi tiết
NL
Xem chi tiết
DN
Xem chi tiết
B2
Xem chi tiết