Không có nguyên tố phù hợp !
Không có nguyên tố phù hợp !
Tìm tất cả các số nguyên tố p sao cho p-1 và p+1 cùng có 6 ước tự nhiên
Tìm tất cả các số nguyên tố p sao cho p-1 và p+1 cùng có 6 ước tự nhiên
giúp giải khẩn cấp mng ơi:
1.cho stn n có 1995 ước số có 1 ước nguyên tố chẵn. chứng minh n là số chính phương, n chia hết 4
2. cho a là 1 hợp số, khi phân tích ra thừa số nguyên tố a chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2. biết a^3 có tất cả 40 ước số. a^2 có bn ước số
3.tìm số tự nhiên n > hoặc = 1 sao cho tổng 1!+2!+3!+...+n! là một số chính phương
4. tìm số tự nhiên n có 2 c.s biết 2n+1 và 3n+1 đều là scp
5. chứng minh:
a)p và q là 2 số nguyên tố lớn hơn 3 thì p^2-q^2chia hết cho 24
b)Nếu a;a+k;a+2k (a và k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết 6
6.a)Một số nguyên tố chia 43 dư r (r là hợp số).TÌm r
b)1 số nguyên tố chia 30 dư r. Tìm r biết r ko là hợp số
Tìm số nguyên tố p sao cho p+1 và p-1 có 6 ước tự nhiên.
Cám ơn trước nha! Mình đang cần gấp lém!!!
đề 1 chứng minh rằng với mọi số tự nhiên n ,các số sau là số nguyên tố cùng nhau
a/ 7n+10 và 5n+7
b/ 2n+ và 4n+8
đề 2 chứng minh rằng có vô số tự nhiên n để n+15 và n+72 là hai số nguyên tố cùng nhau
Đề 3 số tự nhiên n có 54 ước , Chứng minh rằng tích các ước của n bằng n^27
Đề 4 tìm số tự nhiên khác 0 nhỏ hơn 60 có nhiều ước nhất
Cho m, n là 2 số tự nhiên, biết rằng khi khai triển ra các thừa số nguyên tố thì m, n đều được tạo thành từ 7 số nguyên tố lẻ là p1, p2, p3, p4, p5, p6, p7 và m có tất cả 1024 ước số, n có 256 ước số. Chứng minh rằng tích m.n khi chia cho 4 sẽ có số dư là 1.
Tìm tất cả các số tự nhiên n sao cho \(p=3n^3-7n^2+3n+6\) là một số nguyên tố
Tìm tất cả các số tự nhiên n sao cho n+1, n+3, n+7, n+9, n+13 và n+15 đêu flaf số nguyên tố.
Làm nhanh giúp mình nhé, mình tick cho
Bài 1: Tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố:
a) p + 2, p + 6, p + 8, p + 14.
b) p + 6, p + 8, p + 12, p + 14.
c) p + 4, p + 6, p + 10, p + 12, p+16, p+22.
Bài 2: Chứng minh rằng mọi ước số nguyên tố của: 2018! – 1 đều lớn hơn 2018.
Bài 3: Tìm tất cả các số nguyên tố x, y sao cho: x2 – 6y2 = 1.
Bài 4: Tìm p, q là các số nguyên tố sao cho: p2 = 8q + 1
Bài 5: Cho p là số nguyên tố. Chứng minh rằng (p-1)! không chia hết cho p.