1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tính B=\(\frac{2.1+1}{\left[1.\left(1+1\right)^2\right]}+\frac{2.2+1}{\left[2.\left(2+1\right)^2\right]}+\frac{2.3+1}{\left[3.\left(3+1\right)^2\right]}+...+\frac{2.99+1}{\left[99.\left(99+1\right)^2\right]}\).
tìm số nguyên a sao cho \(a^4+4\)là số nguyên tố
Tìm tất cả các số có hai chữ số \(\overline{ab}\) sao cho \(\frac{ab}{\left|a-b\right|}\) là số nguyên tố
cho dãy số \(U_n=\frac{\left(2+\sqrt{3}\right)^n-\left(2-\sqrt{3}\right)^n}{2\sqrt{2}}\)
tìm tất cả các số nguyên n để Un chia hết cho 3
1. Tìm 2 số tự nhiên x, y sao cho \(\frac{\left(x+1\right)\left(x-y\right)}{y^2-xy+1}\) là số nguyên tố.
2. Cho a, b, c là các số thực dương. Chứng minh \(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Tìm tất cả các bộ ba số nguyên dương (a;b;c) thỏa mãn :
\(a\le b\le c\)và \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=2\)
Câu 1. Giải phương trình: \(\left(x^2+x+1\right)\left(x^4+2x^3+7x^2+26x+37\right)=5\left(x+3\right)^3\)
Câu 2. Cho a, b, c là ba nghiệm của đa thức \(f\left(x\right)=x^3-3x+1\). Tính giá trị của biểu thức \(A=\frac{1+2a}{1+a}+\frac{1+2b}{1+b}+\frac{1+2c}{1+c}\)
Câu 3. a) Tìm số tự nhiên n sao cho \(\left(n^2-8\right)^2+36\)là số nguyên tố
b) Tìm số nguyên x, y thỏa mãn \(x^2y^2-x^2-8y^2=2xy\)
Tìm tất cả các số nguyên dương m,n sao cho p = m^2+n^2 là số nguyên tố và m^3+n^3 - 4 chia hết cho p
a) Chứng minh rằng với mọi số n nguyên dương đều có : A = 5n ( 5n + 1) - 6n ( 3n + 2 ) chia hết cho 91
b) Tìm tất cả các số nguyên tố p sao cho : p2 + 14 là số nguyên tố