Với n nguyên dương.
Đặt A=\(n^{2015}+n+1=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(\left(n^3\right)^{.671}-1\right)+\left(n^2+n+1\right)\)
Mà : \(\left(n^3\right)^{.671}-1⋮\left(n^3-1\right)\)
và \(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\)
=> \(\left(n^3\right)^{671}-1⋮\left(n^2+n+1\right)\)
=> \(A⋮n^2+n+1\)
Theo bài ra: A là số nguyên tố
=> \(\orbr{\begin{cases}A=n^2+n+1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n^{2015}=n^2\\n^2+n=0\end{cases}\Leftrightarrow}}\orbr{\begin{cases}n=1\left(tm\right)\\n=0;n=-1\left(loai\right)\end{cases}}\)vì n nguyên dương
Vậy n=1