Violympic toán 9

LQ

Tìm tất cả các số nguyên dương m,n sao cho m+n2 chia hết cho m2-n và n+m2 chia hết cho n2+m

NH
19 tháng 2 2020 lúc 23:02

Chắc đề là như này : Tìm tất cả các số nguyên dương m,n sao cho \(m+n^2⋮m^2-n\)\(m^2+n⋮n^2-m\)

Ko mất tính tổng quát giả sử \(n\ge m\) . Ta xét các TH sau :

+ TH1: \(n>m+1\Rightarrow n-1>m\)

\(\Rightarrow n\left(n-1\right)>m\left(m+1\right)\Rightarrow n^2-m>m^2+n\)

\(\Rightarrow m^2+n⋮̸n^2-m\)

+ TH2: \(n=m+1\) \(\Rightarrow m+\left(m+1\right)^2⋮m^2-\left(m+1\right)\)

\(\Rightarrow m^2-m-1+4m+2⋮m^2-m-1\) \(\Rightarrow4m+2⋮m^2-m-1\)

\(\Rightarrow4m+2\ge m^2-m-1\Rightarrow m^2-5m-3\le0\)

\(\Rightarrow\frac{5-\sqrt{37}}{2}\le m\le\frac{5+\sqrt{37}}{2}\) \(\Rightarrow m\in\left\{0;1;2;3;4;5\right\}\)

Thử từng TH chú ý n = m + 1

+ TH3: \(n=m\) ta có : \(m+n^2⋮m^2-n\Rightarrow n^2+n⋮n^2-n\Rightarrow2n⋮n^2-n\)

\(\Rightarrow2n\ge n^2-n\) ( do \(2n>0\) ) \(\Rightarrow n^2-3n\le0\Rightarrow0\le n\le3\)

Thử từng TH với đk m = n.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TQ
Xem chi tiết
NC
Xem chi tiết
NT
Xem chi tiết
PQ
Xem chi tiết
TC
Xem chi tiết
NM
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
LS
Xem chi tiết