PB

Tìm tất cả các giá trị thực của tham số m để phương trình sau có nghiệm  x ∈ [ 1 ; 2 ] .

x 4 + 16 x 4 + 4 ( x 2 + 4 x 2 ) - 12 ( x - 2 x ) = m

A.  - 13 ≤ m ≤ 11

B.  - 15 ≤ m ≤ 9

C.  - 15 < m < 9

D.  - 16 ≤ m ≤ 9

CT
25 tháng 12 2018 lúc 15:15

Đáp án là  B.

Đặt t = x - 2 x  Đạo hàm  t , = 1 + 2 x 2 >   0

Do đó t ( 1 ) ≤ t ≤ t ( 2 ) , ∀ x ∈ [ 1 ; 2 ] , suy ra  - 1 ≤ t ≤ 1

Ta có  x 2 + 4 x 2 = t 2 + 4 , x 4 + 16 x 4 = ( x 2 + 4 x 2 ) 2 - 8 = ( t 2 + 4 ) 2 - 8 = t 4 + 8 t 2 + 8

Phương trình đã cho trở thành

t 4 + 8 t 2 + 8 - 4 ( t 2 + 4 ) - 12 t = m ⇔ t 4 + 4 t 2 - 12 t = m + 8   ( * )

Phương trình đã cho có nghiệm trong đoạn [1;2] khi và chỉ khi phương trình (*) có nghiệm trong [-1;1] Xét hàm số y=f(t)= t 4 + 4 t 2 - 12 t  trên [-1;1]

Đạo hàm  y , = 4 t 8 + 8 t - 12 ,   t ∈ ( - 1 ; 1 ) . y , = 4 ( t - 1 ) ( t 2 + t + 3 ) < 0 , ∀ t ∈ ( - 1 ; 1 )

Bảng biến thiên:

Do đó để phương trình đã cho có nghiệm trên [1;2] thì  - 7 ≤ m + 8 ≤ 17 ⇔ - 15 ≤ m ≤ 9

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết