Tìm tất cả các giá trị thực của tham số m để hàm số f x = x 2 − x − 2 x − 2 k h i x ≠ 2 m k h i x = 2 liên tục tại điểm x = 2
A. m = -3
B. m = 1
C. m = 3
D. m = -1
Tìm tất cả các giá trị thực của tham số m để hàm số f x = x 2 - x - 2 x - 2 k h i x ≠ 2 m k h i x = 2 liên tục tại điểm x=2
A. m = -3
B. m = 1
C. m = 3
D. m = -1
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Tìm tất cả các giá trị của tham số m để hàm số f x = x 2 - 2 x x - 2 k h i x > 2 m x - 4 k h i x ≤ 2 liên tục tại x=2.
A. Không tồn tại m
B. m = 3
C. m = -2
D. m = 1
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ R . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm phân thực biệt.
A. m > e
B. 0 < m ≤ 1 .
C. 0 < m < e .
D. 1 < m < e .
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f(x)-1=m có đúng 2 nghiệm
A. -2 < m < -1
B. m > 0, m = -1
C. m = -2, m > -1
D. m = -2, m ≥ -1
Cho hàm số y=f(x)(x-1) xác định và liên tục trên R và có đồ thị như hình vẽ dưới đây. Tìm tất cả các giá trị thực của tham số m để đường thẳng y = m 2 - m cắt đồ thị hàm số f x x - 1 tại 2 điểm có hoành độ nằm ngoài đoạn [-1;1]
A. m > 0
B. [ m > 1 m < 0
C. m < 1
D. 0 < m < 1
Cho hàm số y=f(x) xác định, liên tục trên R\{1} và có bảng biến thiên như sau
Tìm tập hợp tất cả các giá trị của tham thực m để phương trình f(x)=m có nghiệm lớn hơn 2
A. ( - ∞ ; 1 )
B. (3;4)
C. ( 1 ; + ∞ )
D. ( 4 ; + ∞ )
Cho hàm số y = f ( x ) liên tục trên R, có đồ thị (C) như hình bên. Tìm tất cả các giá trị thực của tham số m để đường thẳng y = 2 m - 1 cắt đồ thị (C) tại 2 điểm phân biệt
A. m > 3
B. m < 1
C. m = 1 m = 3
D. 1 < m < 3