PB

Tìm tất cả các giá trị của tham số thực m để đường thẳng qua 2 điểm cực trị của đồ thị hàm số: y = x3-3mx+ 2  cắt đường tròn tâm I (1; 1)  bán kính bằng 1 tại 2 điểm A và B  mà diện tích tam giác IAB lớn nhất .

A .   m   =   1 ± 2 2 .

B .   m   =   1 ± 3 2 .

C .   m   =   1 ± 5 2 .

D .   m   =   1 ± 6 2 .

CT
14 tháng 3 2017 lúc 5:38

Đạo hàm y’ = 3x2 – 3m

 

Hàm số có 2 cực trị khi và chỉ khi : m> 0

Khi đó tọa độ 2 điểm cực trị của đồ thị hàm số là: 

 

M ( m ; - 2 m m + 2 ) N ( - m ;     2 m m + 2 )   ⇒ M N → = ( - 2 m ; 4 m m )

 

Phương trình đường thẳng MN: 2mx+ y-2=0

Ta có : 

S ∆ I A B = 1 2 I A . I B . sin   A I B ^ = 1 2 sin   A I B ^ ≤ 1 2

Dấu bằng xảy ra khi 

Chọn B.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
DP
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết