Đáp án B
Điều kiện để đồ thị có tiệm cận:
Tâm đối xứng I(1;-m) là giao điểm của hai đường tiệm cận.
Khi đó, (loại). Vậy không tồn tại m thỏa mãn.
Đáp án B
Điều kiện để đồ thị có tiệm cận:
Tâm đối xứng I(1;-m) là giao điểm của hai đường tiệm cận.
Khi đó, (loại). Vậy không tồn tại m thỏa mãn.
Cho hàm số y = x 3 - 3 x 2 + 4 có đồ thị (C) , đường thẳng (d): y=m(x+1) với m là tham số, đường thẳng ∆ : y = 2 x - 7 . Tìm tổng tất cả các giá trị của tham số m để đường thẳng (d) cắt đồ thị (C) tại 3 điểm phân biệt A(-1;0); B;C sao cho B,C cùng phía với ∆ và d B ; ∆ + d C ; ∆ = 6 5 .
A. 0
B. 8
C. 5
D. 4
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số y = 2 x - 3 ( m - 1 ) x 2 + 4 có tiệm cận ngang
A. m > 0
B. m ≥ 1
C. m > 1
D. Không có giá trị nào của m
Cho hàm số y = 1 x 3 - 3 x 2 + m - 1 với m là tham số. Tìm tất cả các giá trị của m để đồ thị hàm số đã cho có 4 đường thẳng tiệm cận.
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x - 2 x 2 - m x + 1 có đúng 3 đường tiệm cận.
A. -2<m<2
B. m > 2 m < - 2 h o ặ c m ≠ - 5 2
C. m>2 hoặc m<-2
D. m > 2 m ≠ 5 2 hoặc m<-2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số ( C m ) : y = x - 1 x 2 + x - m có hai đường tiệm cận đứng.
A. Mọi
B.
C.
D.
Tìm tất cả giá trị của m để đồ thị hàm số y = x 2 + x - 2 x 2 - 2 x - m có 3 đường tiệm cận
Cho hàm số y = f(x) = 1 x 3 - 3 x 2 + m - 1 . Tìm tất cả các giá trị của m để đồ thị hàm số có 4 đường thẳng tiệm cận.
A. 1 < m < 5
B. -1 < m < 2
C. m < -1; m > 2
D. m < 1; m > 5
Tìm tất cả các giá trị của tham số m sao cho đồ thị (Cm) của hàm số y = 2 x + m x m + 1 có tiệm cận đứng, tiệm cận ngang và các tiệm cận cùng với hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng 8.
A.
B.
C.
D. không có m thỏa mãn.
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = x + 1 m x 2 + 1 có hai tiệm cận ngang
A. m < 0
B. m = 0
C. m > 0
D. Không có giá trị thực của m