Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

NH

Tìm tất cả các giá trị của m để phương trình \(x^2-mx+m-2=0\) có các nghiệm \(x_1;x_2\) thỏa mãn :

1,\(x_1\times x_2< 0\)

2,\(\left(x_1+\dfrac{1}{x_1}\right)\times\left(x_2+\dfrac{1}{x_2}\right)=9\)

3, \(x_1+x_2=0\)

NT
31 tháng 8 2022 lúc 20:17

1: \(\text{Δ}=\left(-m\right)^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: m-2<0

=>m<2

2: \(\Leftrightarrow\dfrac{x_1^2+1}{x_1}\cdot\dfrac{x_2^2+1}{x_2}=9\)

\(\Leftrightarrow\dfrac{\left(x_1\cdot x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=9\)

\(\Leftrightarrow\dfrac{\left(m-2\right)^2+\left(-m\right)^2-2\left(m-2\right)+1}{m-2}=9\)

\(\Leftrightarrow m^2-4m+4+m^2-2m+4+1=9m-18\)

\(\Leftrightarrow2m^2-6m+9-9m+18=0\)

=>2m^2-15m+27=0

hay \(m\in\varnothing\)

3: =>m=0

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
LN
Xem chi tiết
VH
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
LT
Xem chi tiết