Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

NL

Cho phương trình: \(x^2+mx+1=0\)

Tìm m để pt sau có 2 nghiệm thỏa mãn: \(A=\dfrac{\left(x_1-x_2\right)^2}{x_1+x_2-1}\) có giá tị nguyên

BV
28 tháng 11 2017 lúc 14:41

Để phương trình có hai nghiệm thì \(\Delta\ge0\)\(\Leftrightarrow m^2-4\ge0\) \(\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).
Theo định lý Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=1\end{matrix}\right.\).
Khi đó: \(A=\dfrac{\left(x_1-x_2\right)^2}{x_1+x_2-1}=\dfrac{\left(x_1+x_2\right)^2-4x_1x_2}{x_1+x_2-1}=\dfrac{\left(-m\right)^2-4.1}{-m-1}\)\(=-\dfrac{m^2-4}{m+1}\)\(=-\dfrac{m\left(m+1\right)-\left(m+1\right)-3}{m+1}\)\(=-m-1-\dfrac{3}{m+1}\).
Để A có giá trị nguyên thì \(m+1\inƯ\left(3\right)\) .
Suy ra \(m+1\in\left\{-1;1;-3;3\right\}\).
m + 1 = -1 thì m = - 2.
m + 1 = 1 thì m = 0. (loại).
m + 1 = -3 thì m = -4.
m + 1 = 3 thì m = 2.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LT
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
VH
Xem chi tiết
LT
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết