Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

H24

Tìm tất cả các giá trị của tham số m để phương trình \(x^2-2mx+m+2=0\) có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn \(x^3_1+x_2^3\le16\)

TH
11 tháng 3 2021 lúc 17:24

Để pt có 2 nghiệm phân biệt thì \(\Delta'=m^2-\left(m+2\right)>0\Leftrightarrow\left(m+1\right)\left(m-2\right)>0\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -1\end{matrix}\right.\). (1)

Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\).

Ta có \(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(2m\right)^3-3.2m.\left(m+2\right)=8m^3-6m^2-12m\).

Do đó \(8m^3-6m^2-12m\le16\Leftrightarrow\left(m-2\right)\left(8m^2+10m+8\right)\le0\Leftrightarrow m\le2\)

(do \(8m^2+10m+8=2\left(2m+\dfrac{5}{4}\right)^2+\dfrac{39}{8}>0\forall m\)).

Kết hợp vs (1) ta có m < -1.

Bình luận (0)

Các câu hỏi tương tự
MS
Xem chi tiết
KR
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
MS
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết