Tìm các cặp số nguyên (x;y) thỏa mãn : \(x^2y+xy-2x^2-3x+4=0\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: \(x^5+y^2=xy^2+1\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+2y^2-3xy+2x-4y=0\\x^2+y^2-xy+2y-5=0\end{matrix}\right.\)
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
giải hpt
\(\left\{{}\begin{matrix}x^2+2y^2-3xy-2x+4y=0\\\left(x^2-5\right)^2=2x-2y+5\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+2y^2-3xy-2x+4y=0\\\left(x^2-5\right)^2=2x-2y+5\end{matrix}\right.\)
Tìm các cặp số nguyên (x; y) thỏa mãn: \(\left|x^2-2x\right|-\dfrac{1}{2}< y< 2-\left|x-1\right|\)
Tìm các số nguyên dương x và y thỏa mãn: \(\dfrac{2x+2y}{xy+2}\) có giá trị là 1 số nguyên