Violympic toán 9

JN

giải hpt

\(\left\{{}\begin{matrix}x^2+2y^2-3xy-2x+4y=0\\\left(x^2-5\right)^2=2x-2y+5\end{matrix}\right.\)

NL
13 tháng 5 2019 lúc 20:08

\(x^2-\left(3y+2\right)x+2y^2+4y=0\)

\(\Delta=\left(3y+2\right)^2-4\left(2y^2+4y\right)=y^2-4y+4=\left(y-2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{3y+2-y+2}{2}=y+2\\x=\frac{3y+2+y-2}{2}=2y\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x-2\\2y=x\end{matrix}\right.\)

TH1: \(\) \(y=x-2\)

\(\left(x^2-5\right)^2=2x-2\left(x-2\right)+5\)

\(\Leftrightarrow\left(x^2-5\right)^2=9\Rightarrow\left[{}\begin{matrix}x^2-5=3\\x^2-5=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=8\\x^2=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm2\sqrt{2}\Rightarrow y=-2\pm2\sqrt{2}\\x=\pm\sqrt{2}\Rightarrow y=-2\pm\sqrt{2}\end{matrix}\right.\)

TH2: \(2y=x\)

\(\Leftrightarrow\left(x^2-5\right)^2=2x-x+5\Leftrightarrow\left(x^2-5\right)^2=x+5\)

Đặt \(x^2-5=a\Rightarrow5=x^2-a\) pt trở thành:

\(a^2=x+x^2-a\Leftrightarrow x^2-a^2+x-a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)+x-a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-x=0\\a+x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-5=0\\x^2-5+x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)

Bạnt ự giải nốt

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
LY
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
PQ
Xem chi tiết
PT
Xem chi tiết
DT
Xem chi tiết
TT
Xem chi tiết
BL
Xem chi tiết