Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tim tất cả các cặp số hữu tỉ x, y có dạng x=1/b, y=c/3, b, c thuộc Z, b khác 0, sao cho|x| + |y| =1
Tìm tất cả các cặp số hữu tỷ x, y có dạng x = 1/b y=c/3, b, c thuộc Z, b khác 0, sao cho |x| + |y| = 1
Tìm tất cả các cặp số hữu tỉ x, y có dạng x=\(\frac{1}{b}\), y = \(\frac{c}{3}\), b, c thuộc Z, b khác 0 , sao cho |x| + |y|= 1
Tìm tất cả các cặp số hữu tỉ x,y có dạng \(x=\frac{1}{b}\) , \(y=\frac{c}{3},b,c\inℤ,b\ne0\) sao cho \(|x|+|y|=1\)
LÀM GIÚP MÌNH BÀI NÀY VỚI
1.a) tìm 2 số hữu tỉ x và y (y khác 0) thõa mãn tổng = tích = thương
b) ______________________________________hiệu = tích = thương
c) Có 2 số hữu tỉ a và b trái dấu, không đối nhau, thõa mãn 1/a +1/b = 1/a+b
d) Có tồn tại 2 số dương a và b khác nhau, thõa mãn 1/a - 1/b = 1/a-b hay không ? Vì sao?
2) Tìm cặp số nguyên x, y sao cho x-1/5 = 3/y+4
3) Tìm x, y, z thuộc Q, biết rằng :
x + y = - 7/6 ; y + z = 1/4 ; z + x = 1/12
1) a) tìm 2 số hữu tỉ x, y với y khác 0 thõa mãn tổng = tích = thương
b) tìm 2 số hữu tỉ x, y với y khác 0 thõa mãn hiệu = tích = thương
2) có 2 số hữu tỉ a, b trái dấu , hk đối nhau, thõa mãn 1/a + 1/b = 1/(a+b)
3) có tồn tại 2 số dương a, b khác nhau, thỏa mãn 1/a - 1/b= 1/(a-b) hay không vì sao
4) tìm cặp số nguyên x, y sao cho (x-1)/5=3/(y+4)
5) tìm x,y,z thuộc Q biết rằng
x+y= -7/6 y+z=1/4 z+x = 1/12
Bài 1 tìm x y biết x/y+z+1=y/x+z+1=z/x+y-2=x+y+z
Bài 2 cho a(y+z)=b(z+x)=c(x+y) với a khác b khác c và a,b,c khác 0 Cmr y-z/a(b-c)=z-x/b(c-a)=x-y/c(a-b)
Bài 3 tìm p/s dạng p/s tối giản a/b biết a/b=a+6/b+9 với a,b thuộc Z , b khác 0
Bài4cho 4 tỉ số bằng nhau a+b+c/d ; b+c+d/a ; c+d+a/a ; d+a+b/c tính giá trị của mỗi tỉ số trên
a) tìm giá trị nhỏ nhất của biểu thức C= \(\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)3
b) chứng tỏ rằng S=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)không là stn với mọi n thuộc N , n>2
c) tìm tất cả các cặp số nguyên x,y sao cho : x-2xy+y=0
d)tìm tất cả các cặp số nguyên dương x,y,z thỏa mãn : x+y+z=xyz
cho các số hữu tỉ x=a/b , y=c/d , z=a+c/b+d ( a,b,c,d thuộc Z , b,d khác 0 ) CMR nếu x<y thì x<y<z