Tìm tất cả các bộ ba số nguyên dương (p;q,n) , trong đó p,q là các số nguyên tố , thỏa mãn :
p(p+3) + q(q+3)=n(n+3)
Tìm tất cả các bộ 3 số nguyên dương \((p, q, n)\) sao cho p , q là các số nguyên tố thỏa mãn: \(p(p+3) + q(q+3) = n(n+3)\)
Tìm tất cả các số nguyên tố p q ,và số nguyên dương n thỏa mãn:
\(p\left(p+3\right)+q\left(q+3\right)=n\left(n+3\right)\)
tìm tất cả các bộ ba số (x,n,p) với các số x,n là là các số nguyên dương và p là số nguyên tố thỏa
mãn :
\(x^3+2x=3\left(p^n-1\right)\)
Tìm tất cả các số nguyên tố p, q, r thỏa mãn:
(p + 1)(q + 2)(r + 3) = 4pqr
Tìm tất cả các số nguyên tố p thỏa mãn: \(3p^3-3p+1\) là số chính phương.
Mọi người giúp em với , em cần gấp =() :
Câu 1 : Tìm số tự nhiên \(n\)để \(5^{2n^2-6n+2}-12\)là số nguyên tố
Câu 2 : Chứng minh rằng không tồn tại các bộ 3 số nguyên \(\left(x;y;z\right)\)thỏa mãn đẳng thức : \(x^4+y^4=7z^4+5\)
Câu 3 : Chứng minh rằng \(\left(a,5\right)=1\)thì \(a^{8n}+3a^{4n}-4\)chia hết cho 100.
Câu 4 : Có hay không số nguyên tố \(p\) thỏa mãn \(8p-1;8p+1\)cũng là số nguyên tố ? Giải thích ?
Câu 5 : Tìm \(n\)nguyên sao cho \(s=n^4+10n^3+40n^2+78n+63\)là số chính phương
Câu 6 : Tìm tất cả số tự nhiên \(n\)để \(n^3-n^2-7n+10\)là số nguyên tố .
Tìm tất cả các số nguyên dương n thỏa mãn \(n^n+1\)là số nguyên tố và \(n^n+1< 10^{19}\)
1) Cho các số nguyên \(x,y\)thỏa mãn \(x^3+y^3=2016\). Chứng minh rằng: \(\left(x+y\right)^3+3xy\left(x+y\right)\)chia hết cho 18.
2) Tìm tất cả các số nguyên tố \(p\)sao cho\(p^2+14\)là số nguyên tố.
3) Tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)