Đáp án C
Hàm số xác định khi sin x ≠ 1 2 sin x ≠ 0 ⇔ x ≠ π 6 + k 2 π x ≠ 5 π 6 + k 2 π x ≠ k π
Đáp án C
Hàm số xác định khi sin x ≠ 1 2 sin x ≠ 0 ⇔ x ≠ π 6 + k 2 π x ≠ 5 π 6 + k 2 π x ≠ k π
Cho sinα.cos(α+β) = sinβ với α+β ≠ π/2 + kπ,α ≠ π/2+lπ(k,l ϵ Z). Ta có:
A. tan(α+β)=2cotα
B. tan(α+β)=2cotβ
C. tan(α+β)=2tanβ
D.tan(α+β)=2tanα
Cho hàm số f ( x ) = 1 + c o s x ( x - π ) 2 k h i x ≠ π m k h i x = π Tìm m để f(x) liên tục tại x = π
A. m = 1 4
B. m = - 1 4
C. m = 1 2
D. m = - 1 2
Hình phẳng giới hạn bởi đồ thị hàm số y = e x . sin x và các đường thẳng x = 0, x = π, trục hoành. Một đường x = k cắt diện tích trên tạo thành 2 phần có diện tích bằng S 1 , S 2 sao cho 2 S 1 + 2 S 2 - 1 = 2 S 1 - 1 2 khi đó k bằng:
A. π 4
B. π 2
C. π 3
D. π 6
Hình phẳng giới hạn bởi đồ thị hàm số y = e x . s i n x và các đường thẳng x = 0 , x = π ,trục hoành. Một đường x = k cắt diện tích trên tạo thành 2 phần có diện tích bằng S 1 ; S 2 sao cho 2 S 1 + 2 S 2 - 1 = 2 S 1 - 1 2 khi đó k bằng:
A. π 4
B. π 2
C. π 3
D. π 6
Cho hàm số y = sin2 x+2 sinx, với x∈ [ - π ; π ] . Hàm số này có mấy điểm cực trị
A. Bốn.
B. Một.
C. Ba.
D. Hai.
Trong các hàm số y = tan x ; y = sin 2 x ; y = sin x ; y = c o t x có bao nhiêu hàm số thỏa mãn tính chất f x + k π = f x ; ∀ x ∈ ℝ ; k ∈ ℤ
A. 3
B. 2
C. 1
D. 4
Tập xác định của hàm số ( x 2 - 3 x + 2 ) π là:
A. R\{1;2}
B. (1;2)
C. ( - ∞ ; 1 ] ∪ [ 2 ; + ∞ )
D. - ∞ ; 1 ∪ 2 ; + ∞
Tập xác định của hàm số ( x 2 - 3 x + 2 ) π là
A. R \ { 1 ; 2 }
B. ( - ∞ ; 1 ) ∪ ( 2 ; + ∞ )
C. ( 1 ; 2 )
D. ( - ∞ ; 1 ] ∪ [ 2 ; + ∞ )
Cho hàm số f thỏa mãn f cot x = sin 2 x + cos 2 x , ∀ x ∈ 0 ; π . Giá trị lớn nhất của hàm số g x = f sin 2 x . f cos 2 x trên ℝ là
A. 6 125 .
B. 1 20 .
C. 19 500 .
D. 1 25 .
Tìm góc α ∈ {π/6;π/4;π/3;π/2} để phương trình cos2x+ 3 sin2x-2cosx= 0 tương đương với phương trình c o s ( 2 x - α ) = cos x
A. α = π / 6
B. α = π / 4
C. α = π / 2
D. α = π / 3