Tìm tập nghiệm của bất phương trình log ( x - 21 ) < 2 - log x
A. (-4; 25)
B. (0; 25)
C. (21; 25)
D. (25; +∞)
Tập nghiệm của bất phương trình log 2 x - 1 ≥ log x là
Tìm số nghiệm nguyên của bất phương trình log 5 2 ( 3 x - 2 ) log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x 0 . Giá trị của a + b - x 0 bằng:
A. 100
B. 30
C. 150
D. 50
Tìm tập nghiệm S của bất phương trình log0,2 (x – 1) < log0,2 (3 – x).
A. S = - ∞ ; 3
B. S = 2 ; 3
C. S = 2 ; + ∞
D. S = 1 ; 2
Tập nghiệm của bất phương trình log(x2 + 25) > log(10x) là
Tập nghiệm của bất phương trình
log ( x 2 - 4 ) > log ( 3 x ) là:
Tìm tập nghiệm S của bất phương trình log 1 2 ( x + 1 ) < log 1 2 ( 2 x - 1 )
A. S = ( 1 2 ; 2 )
B. S = (-1; 2)
C. S = ( 2 ; + ∞ )
D. S = ( - ∞ , 2 )
Với m là tham số thực dương khác 1. Hãy tìm tập nghiêm S của bất phương trình logm(2x2 + x + 3) ≤ logm(3x2 - x). Biết rằng x = 1 là một nghiệm của bất phương trình.
Tìm tập nghiệm S của bất phương trình 3 x 2 - x = 4 x