Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
\(3n+5⋮n+1\)
\(\Rightarrow3n+3+2⋮n+1\)
\(\Rightarrow3\left(n+1\right)+2⋮n+1\)
\(\Rightarrow3\left(n+1\right)⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;2\right\}\)
Với n + 1 = 1 => n = 1 - 1 = 0
Với n + 1 = 2 => n = 2 - 1 = 1