HM

tìm số tự nhiên thỏa mãn điều kiện: 2.2^2+3.2^3+4.2^4+........+n.2^n= 2^n+34( n+34 là mũ của 2 nhé)

DH
6 tháng 3 2021 lúc 17:52

\(A=2.2^2+3.2^3+...+n.2^n\)

\(2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)

\(2A-A=\left(2.2^3+3.2^4+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+...+n.2^n\right)\)

\(A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)

\(A=-2^2-\left(2^2+2^3+2^4+...+2^n\right)+n.2^{n+1}\)

\(A=-2^2-\left(2^{n+1}-2^2\right)+n.2^{n+1}\)

\(A=\left(n-1\right)2^{n+1}=\left(2n-2\right).2^n\)

Từ đây phương trình ban đầu tương đương với: 

\(\left(2n-2\right).2^n=2^{n+34}\)

\(\Leftrightarrow\left(2n-2\right).2^n=2^n.2^{34}\)

\(\Leftrightarrow n-1=2^{33}\)

\(\Leftrightarrow n=2^{33}+1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
VT
Xem chi tiết
NL
Xem chi tiết
CT
Xem chi tiết
TH
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
ND
Xem chi tiết
NB
Xem chi tiết