Gọi số đó là a
a chia cho 37 dư 1 => a - 1 chia hết cho 37
a chia cho 39 dư 14 => a - 14 dư 39 => (a - 1) - 13 chia hết cho 39
=> 3(a - 1) - 39 + 39 chia hết cho 39 => 3(a - 1) chia hết cho 39
a - 1 chia hết cho 37 => 3(a - 1) chia hết cho 37
Do đó, 3(a - 1) chia hết cho cả 37 và 39 mà 37; 39 nguyên tố cùng nhau nên 3(a - 1) chia hết cho 37.39 = 1 443
=> 3(a - 1) là bội của 1 443
B(1 443) = {0; 1443; ...}
+) Nếu 3(a - 1) = 0 => a = 1 .
Thử lại: 1 chia cho 39 không dư 14 => Loại
+) Nếu 3(a - 1) = 1 443 => a - 1 = 481 => a = 482
Thử lại: 482 : 37 = 13 (dư 1) ; 482 : 39 = 12 (dư 14)
Vì a nhỏ nhất nên chọn a = 482
Vậy số đó là 482
số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên)
39.k+14=37.k+2.k+14 chia cho 37 dư 1
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên)
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên )
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482
Nếu đúng thì lik-e mình nhé